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K.V. Rozhdestvensky & G.M. Fridman
Department of Applied Matlhematics & Mathematical Modelling

St.Petersburg State Marine Technical University
Lotsmanskaya str., 3
190008, St.Petersburg

Russia

Summary: The purpose of the lecture is to deemonstrate the method of Matched Asymptotic Expansion (MAE)
to I)e efficiently applicab)le to various supercavitating flow probleIs. Two model problems were chosen to prove
the statement. The first one is a problem of the flow around a supercavitating shock free hydrofoil with spoiler
mounted on its trailing edge and wedge-like fully wetted leading edge. A gallery of local nonlinear edge solution
is proposed for the inner flow prob)lems in the vicinity of the spoiler as well as in the vicinity of the sharp or
rounded cavitating leading edge. The second problem is supercavitating wing of large aspect ratio I)eneath
the free surface. In 1)oth cases analytical solutions to nonlinear inner problem were applied to accomplish the
matching procedure and to significantly extend the range of the flow paramlleters where asymptotic approach
gives reliable results. Solutions obtained in the framework of the MAE method as well as linear and nonlinear
theories are illustrated in the text I)y numerical data.

1. Introduction

The Matched Asymptotic Expansions (MAE) method is an appropriate solution technique for a wide variety
of fluid mechaiics problems. As a rule, the classical MAE method involves the following steps while solving a
lifting flow (including cavitating one) problelml:
a) to determine what the small paraineters of the problem are and, depending on the answer to the question,
sub)divide the flow domain into a so-called farfield and a nearfield, that is, regions far from and in the vicinity
of a source of singular perturb)ations; formulation of problems in those regions - outer and inner problems
correspondingly. The main goal of the sub)dividing procedure is to simiplify the outer problem as compared to
a general one (for instance, such a simplification is I)rought ai)out b)y the linearization procedure for all the
I)oundary conditions in outer region), and to take into account as much nonlinear effects as possib)le in the
nearfield.
1)) a ýrough' asymptotic analysis of b)oth outer and inner descriptions from the viewpoint of a solution class
to the problems arising in those sui)domains. For instance, a presence of the spoiler on the trailing edge of
planing or cavitating hydrofoil dictates a non-traditional class (namely, Dc - Dc instead of customary Dc - 0)
of linearized outer solution to the correspjonding mixed I)oundary problein. I the case of a cavitating problem
that means that the function of complex conjugate velocity in the farfield has to have square root singularity
on the trailing edge of the hydrofoil and -1/4 on the leading one, see Rozhdestvensky & Fridman [17];
c) solution of the outer lifting flow problem, in the flow region far from the inner zone. Such an outer asymiptotic
expjansion is often derived under the assumlption of small perturl)ations b)rought I)y a hydrofoil into the inflow.
The assumption loses its correctness in the vicinity of the inner sub-region and so does the outer expansion.
Outer solution contains some elements of uncertainty caused by the influence of local problem, as some significant
features were omitted from consideration.
Note that the MAE method does not always require the outer problem to be linear and it is not a general
restriction on its applicab)ility. Examples as such are ab)ound Nut here we to some degree confine ourselves by
such an assumnption.
(1) solution of the inner flow probleI, i.e. construction of a so-called inner asyimptotic expansion which is
correct in the local region and loses its correctness in the farfield. It should 1)e pointed out that inner problem
is usually considered in stretched local coordinates, the stretching factor I)eing connected with a chosen small
parameter. It is I)y taking advantage of the stretching procedure that the inner problem is also simplified, for
instance, reducing of three-dimensional problem to two dimensions in the nearfield, neglecting the gravity, etc.
This allows to apply a nonlinear approach to adlequately describe the most iimportant part of the flow domain.
Because of the influence of the outer region, inner solution contains some unknown paramneters, as well;
e) matching procedure for outer and inner expjansions which is applied to iblend' them and to take into account
their interaction. This stage allows us to close the solution to the whole problem because all the unknown
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paramieters in the far- and nearfield are determnined. Using the results obtained, a composite uniformnly valid
asymIptotic solution to the problem under consideration is reached. Such a comjposite solution is shown to
he correct in the whole flow domain and enables one to remove some intrinsic drawbacks of the purely linear
description used in the outer region.
The advantages of such an asymptotic method of treating the lifting flow problemis are easily seen and thor-
oughly discussed iy many authors, see Van Dyke [24], Cole [2], Ogilvie [14], Rozhdestvensky [16], etc. In this
connection a 'mathematical constructor' approach should be mentioned, advocated in Fridnian [3] and lridman
& Rozhdestvensky [4, 17]. It is by applying this approach that one can pick rip and then to comibine the
necessary outer and inner asymiptotic expansions (just like standard 'mathematical parts' or the details of the
whole construction) to obtain a desired everywhere correct solution.
It is a well known fact that the MAE method, 1)eing applied to the lifting flow problems, enables one to
scrutinize those flow regions, where nonlinearities of the problemn under consideration are concentrated and
most pronounced, while outer flow domain, far from such zones of nonlinearity, can he described more or less
sufficiently in the frameworks of an appropriate linear theory. In this case the outer description is certainly
to retain some aftermaths of the linearization of the broundary conditions which, though, can he efficiently
overcome by MAE technique.

2. Supercavitating shock free hydrofoil with spoiler

2.1 Problem formulation

Consider a cavitating probleln for the hydrofoil with the spoiler, at arbitrary cavitation nuiner, see figure 1, the
influence of gravity being neglected. The Efros cavity closure model with re-entrant jet is adopted. The origin
of the Cartesian coordinate system is taken at the plate's leading edge, x-axis I)eing directed downstream and
y ujpwards. There is an incident stream with speed V. coming from the left. The region occupied by the fhlid
is brounded by the solid straight boundaries [AC], [OB] and arbitrarily arched portion (CO) given in the form
y = f(x) and the cavity surfaces (AE) and (BE), the intervals [AC] and [OB] ieing of the length ýACI = 1,
and OBI = E. The hydrofoil chord 0CJ is chosen to he 1. The incidence angle is a, the inclination angle of
the spoiler with respect to the hydrofoil chord is 3 and the angle made by [AC] and (CO) is -y
It is of importance that the dividing streamiline would meet the cavitating plate at the vertex of the wetted
surface (ACOB), namiely at point C, to provide the shock-free cavitating mode. In this case the length of
the upper wetted portion of the leading edge 1, is to he treated as an unknown paramfeter of the problemn, the
angle - made by [AC] and (CO) being given. Since the cavitation numiber (T > 0, the velocity absolute value
on the free surfaces is vo = v. -/I + (T. The point at infinity on the re-entrant jet is denoted by E and is quite
distinct from D, the point at infinity in the main stream. An additional stagnation point F appears in the flow
pattern b)ecause of the re-entrant jet influence. That is why a double-sheeted Riemann surface is introduced,
one sheet carrying the main flow pattern and the second including the jet. The direction of the jet at point E
is determined by the angle p, see figure 1. All the flow paramneters are rendered nondimensional by using chord
length 1 and velocity vo.

A

0
B V

Figure 1: Shock free supercavitating hydrofoil with spoiler.

As is customary, the problem is considered to be solved when the velocity potential function ((x, y) is found. The
harmonic function p(x, y), b)eing the real part of an analytical function of comfplex potential w = ( + iv), has to
satisfy the bioundary kinematic (flow tangency) condition on the wetted length, the dynamic (pressure/velocity
constancy) condition on the free surface and the condition at infinity.
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Under assumption that the hydrofoil brings small perturbhations into the inflow, subdivide the flow domain into
a farfield (at distances of the order of 0(1)) and nearfields (in the vicinity of the edges) we apply the MAE
method.

2.2. Outer linear solution

Assume that

0 (X) =fP(X) =o(1), ý a o(1) , ýf 7 o(1) , T -Wo(•) , (T o(1),

that is, the hydrofoil and the cavity brings small perturbiations into the inflow and therefore the linearization
procedure has to be accomlplished for the nonlinear boundary (dynamic and kinematic) conditions both on
the free surfaces and on the wetted portion of the foil. Under those circumstances we can neglect the second
order terms in all the equations and can formulate the linearized flow problem for supercavitating contour with
spoiler [22, 21, 9, 10. 17]. All the wetted surface of the hydrofoil and the cavity appears as a slit of length L
in the linearized plane z = -+ iy, where L actually is a linearized cavity extent. Boundary conditions for real
and imaginary parts of the conjugate velocity X° are projected on the upper and lower boundaries of the slit,
see figure 2, where

X,°(z) v- V,,° _ 1v
V() dZ

and w(z) = (p + iVy - function of the complex potential.

y vo

i D (z cc)

A," B, 0 EF T E vo 0 A E0o 1

0 1 L X -a 0

I+2 __L z I

Figure 2: Physical and auxiliary planes.

The physical z-plane has to he miapped into the auxiliary upper semi-plane ( where the mixed boundary value
problem is formulated in Dc - Dc class due to the presence of the spoiler located at the trailing edge of the foil.
The class cc - Dc means that the function X°(z) has to have square-root singularities for z = 0 and z = 1. Such
a behaviour of the outer solution dictates by the asymptotic analysis of the flow problems arising in the vicinity
of the leading and trailing edge with the spoiler done in the section that follows. The analysis also reveals that
lw/1 << a and therefore the kinematic b1oundary condition on the upper wetted portion [AC] of the leading

edge can he neglected correctly in the framework of the linear theory for all the wetted surface of the hydrofoil
appears as a segment of unit length on the lower boundary of the slit in the physical z-plane (points A and C

coincide and so do points B and 0, and E and F).

Note that in the case of lw/1 = 0(1), the kinematic boundary condition on the upper wetted portion [AC]
has to be satisfied. To ensure shock free regime of the flow at the leading edge, the solution to the problem
should behave at point C like z/z as z - 0. Such a solution exists for unique value of the parameter lw/1 which
becomles an ulnknown of the linear problem.

Back to the problem as lw/1 << a, apply Keldysh-Sedov formula for the upper semi-plane in Dc - Dc class:

X°(C) 1+ 0 1) / • + C +0 , (1)
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where A, 13, C and a = 1/-L-- I are unknown parameters to he determined fromn the cavity closure condition
and condition at infinity

mizhn11 °( oo( d(d = 0" ;X° (i) 1- I-2 (T

2

along with condition provided by the matching procedure in the vicinity of the spoiler. It is to he underlined

that the solution provides a square-root singularity for X° at cavity trailing edge z = L, ý -c. It corresponds
to the linearized closed cavity closure models: Riabouchinsky, Efros-Kreisel-Gilbarg, Tulin-Terentev (single
spiral vortex).
Note that the simple noon-quadrature approach can he proposed [21] for a wide range of the functions y f(x)
characterizing the lower surface distribution of the hydrofoil.
It is obvious that the new function

Q(z) = X°(z) -1 +i-O(z)

where 0(x) = f'(x) is a tangential angle to the foil at point x, has pure real values on the wetted portion (as
x E [0; 1]. y = 0+) and pure imaginary values on the cavity surfaces, see figure 2. Let us assume that the wetted
portion of the cavitating hydrofoil is a polynomnial

n

f(x) 1: x
i=O

and therefore n

o(x) f'(x) i o' x .

Then function

Q(() =X0(() - I +1-i S az-'(
i~1

where z(() =L (2/(1 + (2), has to satisfy homogeneous boundary conditions on the upper selni-plane ( in
c - cc class. It should he pointed out that the multiplicity of a pole at the infinity z - cc for the function
Q(z) is equal to (n - 1). i.e. to the degree of the polynomfial f'(x). That is why the solution can he derived
without an integration procedure and is of the formn

i 13( 0 (+C+n1D B Dk -- igk(2
X0(0) 1+ _i+3 _i0(z(O)) +-i +_EC_( -- , _ k _+i)k

k=1

Condition at infinity z D c and at its image ( i for function X° (O)

lill(XO(() 1(-i -2

lil{ ý (°( )-l( i)kz 0 fork= 1...n-I1

linearized cavity closure condition re-written in the formn

m dX0 (i) 0
(1(

along with the matching condition allow unknown paralmeters A, 13, C, Dk, Sk and cavity extent L in (2) to be
determined. So, the number 2n + 2 of unknowns coincides with that of conditions.
Once function x0 (() is found (i.e. the unknowns of the outer problemn are derived), the cavity volume is deter-
unined

z7 v(x) X (Xdt z v(x) X ( - dt l- if(1) (3)

0 1

where superscripts + and - denote the upper and lower boundary of the cavity correspondingly.
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All the hydrodynamic coefficients are also connected to X°(z):

C(x) -2 Re {X Lx 1 (4)

1)-dCL ,= C,(x) dx 2 Re 1X( )-I)•d(1( (5)

0 i

1

D /_ C,(x) 0(x) dx. (6)

0

Both classical and nonquadrature solutions to the supercavitating problemfl remain valid for the open cavity
closure scheme (linearized analog of the WulFabula model) as well. Such a model specifies the velocity field
be continuous at the trailing edge of the cavity what means that the cavity and the trailing wake conjugates
smoothly. From the mathematical point of view it corresponds to non-singular behaviour of X°(z) at point
z = L which iimiplies the condition A = 0 to he satisfied. Then the number of unknowns becomfles 2n + I and

the cavity closure condition hni d (i) 0 should he neglected.

2.3. Inner nonlinear descriptions

2.3.1. A simplest spoiler problem. It was already mentioned above that outer asyimiptotic expJansion loses
its correctness in the vicinity of the spoiler as z - I and inner description dictates the solution class of the outer
one, inmlely Dc - cc. The picture of the flow shown in figure 3 corresponds to stretching of local coordinates in
this region by a factor 1/i: X = (x - 1)/i, Y = y/Y, Y - 0. The region occupied by the fluid is bounded by the
solid boundaries [OB) and [OA] and the free surface (AB), the interval [OA] being of the unit length OAJ = 1.
The absolute value of velocity V. at ýlocal' infinity and on the free surface (AB) is an unknown paramfleter to
be determfined through the imatching procedure with outer problelnl. This is the simnplest flow problemn for a
straight spoiler.

Y B

B 0 A 0 B

0 X 01

-- B

Figure 3: Flow pattern and auxiliary (-plane for the inner spoiler problemfl.

With the correspondence between physical and auxiliary planes (the first quadrant of the ( = ý + ir1 plane is
chosen as ani image of the region occupied by the fluid), one can easily obtain the analytical inner nonlinear
solution (following to Chaplygin method of singular points) in the form:

dw I dw4 sN (7)
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wherefrom(

where N - unknown parameter to be determined from the condition ZA = Z(O) -- eif3 which yields

N r1R1H,/d N 1 (9)

The pressure distribution coefficient (0 < • < cc) is

09 I i( 1 < -1 23/i, (10)

c, ýx~ + I1 (0

where the value of ý is obtained from the relationships between physical and auxiliary coordinates on the interval
[OB], see figure 3:

x N > (11//

and on the interval [OA]:
1N F,1I+\/;/•

IZ•I V• j[•Y_ 1 )_ d• 0<•<•1 (12)

The value of V. is the only unknown parameter left in this problem to he determined through the matching
procedure.
It follows from (11) that X - N[ 2 /(2V4) as X - -cc and + c+c and therefore velocity behaves as X + c

dw ( 2f3 I V V/(2f23 -N 1(1T V 1--- . V 1 .- (13)

If one assumes that V• 1, then coefficient /6 is

v23 -N 3

see figure 4 for IC(f3) curve, which attains its maximum at f3 1.734 (or 99.34°).

B I I I I I

0.5

0.4

0.3

0.2

0.1

0
0 0.5 1 1.5 2 2.5 3

Figure 4: Parameter IC versus f3 for the simplest inner spoiler problem.
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2.3.2. Cavitating shock free leading edge Introduce a local stretched coordinate system in the vicinity of
the wedge-like leading edge Z = X + iY = z/l,,,w where 1,,, < a is the length of the upper wetted portion
of the leading edge. As stagnation point coincides with the vertex of the wedge, value of 1,,. is unknown, but
can be used as a stretching factor.
The flow pattern and corresponding auxiliary (-plane are depicted in figure 5. The flow region is bounded
by semi-infinite line (OB), segment [OC] and free surface (CD). Note that the interval [OC] is of unit length
because of the choice of the stretching factor. Like for the inner spoiler problem, the absolute value of velocity V.
at ýlocal' infinity and on the free surface (CB) is an unknown parameter to be determined through the matching
procedure with outer problem.

B'' 
B

i )

B C B

) X 0

Figure 5: Flow pattern and auxiliary (-plane for the inner leading edge problem.

With the correspondence between plhysical and auxiliary planes (the first quadrant of the ( = ý + i41 plane is
chosen as an image of the region occupied by the fluid), one can easily obtain the analytical inner nonlinear
solution (following to Chaplygin method of singular points) in the form:

dw i -Y/- dw2
X() V Z -+=; N((( + 1);

N -(14)
Z(M (, (<2+i1) +• / (I(

i(

The length of the segment [OC] (QOCI = 1) is connected to the unknown parameter N through the relation

CO, N t ( t2) (i-tV 1 l (It N Q. (15)

0

it is seen that X - Nrl4/(4V.) as X + ÷cc and Y - (= 0- 0, rI - +cc). Therefore the asymptotic structure
of the inner solution at local' infinity as X -+ ÷cc and Y = 0- is

d -- 1iX/ (16)

Such a biehaviour corresponds to a well-known singularity -1/4' arising in the framework of the linear cavitation
theory at the leading edge of the hydrofoil.
Note that in the case of -y = 7 the inner problem reduces to a well-known problem of the flow in the vicinity of
the sharp leading edge of the cavitating hydrofoil considered by Plotkin [15] on the base of a hodograph method,
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Y B

V .4
B

i 0

B C B

C 0) X 0

vo4

Figure 6: Flow pattern and auxiliary (-plane for the inner leading edge problem in the case of - 7.

see figure 6. The solution presented below is appeared to be more efficient and convenient:

dw c - i dwX() V'zdZ + i ; d(1¢-N(2 1

(17)

Z(() = 12i3 '2)
17 4 3 2

where £ OCI and. since X - (3/17) Lrl4 as X -+-c and ri -+Ic,

dw •Vi(1-_ ) _Vi(1-J48•£v 1 (18)

as X - +oc, Y = 0-. The value of £ and V. are to be determined through the matching procedure.

2.3.3. Cavity closure region It is obvious that outer linear solution loses its correctness in the vicinity of
the cavity trailing edge as z - L, where L is the cavity extent, provided a linearized closed cavity closure
scheme (like Riabouchinsky, Tulin-Terentev or Efros-Kreizel-Gilbarg models) is adopted. The outer expression
for the conjugate velocity X°(z) has a square-root singularity at z = L.
Since the latter linearized model is adopted in the outer region, a local nonlinear model is proposed of the
flow in the close proximity of the re-entrant jet, see figure 7. The upper half of the flow pattern is shown
in stretched and rotated local coordinates, the stretching factor being 1/6,, where 6, is re-entrant jet width
at infinity and rotating angle being y, where angle - describes a direction of re-entrant jet at infinity for
Efros-Kreisel-Gilbarg cavity closure scheme. Since the flow pattern has axial symmetry, the streamline (AC)
is suibstituted by the straight solid boundary (ABC). Then the region occupied by the fluid is bounded by free
surface (AFC) and solid horizontal line (ABC), velocity vector at point D is directed downward. The dividing
streamline meets the solid wall at stagnation point B. This streamline suibdivides the flow into two parts: the
first one is the main flow directed downstream with velocity V. at local infinity as X - +Dc and the second
one forms a re-entrant jet of unit width at infinity at point A as X - -cc.
With the correspondence between the physical z = x + iy plane and auxiliary quadrant + -I- i4r shown in
figure 7, the Chaplygin method allows us to write down the following solution:

dw I dw N(2 -1
X ) I _ +-1 =(I - =' (19)

where uinknown p~aramfeter N is connected to the flow rate in the jet at p~oint A through the relation

N 2V. (21)
7T
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Y T/ C

C Vi if F

AV. B C A B C

0 X 01

Figure 7: Flow pattern and auxiliary (-plane for the inner cavity closure problemi.

It readily follows fromn condition x (if) = i that f = I what gives the distance L* between stagnation point B
and normal projection of point ' onto the horizontal line (ABC):

L* = Re (Z(i))I - . (22)
'rc

Both 8, and V. are to he determined through the matching procedure with outer linear solution.
It is seen that X _ ý 2 /7r as X - +cc and i - +cc, that is why

dZ - V_ (23)

which corresponds to the square-root singularity of the conjugate velocity for the outer linear expansion at the
trailing edge of the cavity at z = L.

2.4. The matching procedure

It was mentioned above that outer solution loses its correctness in the vicinity of the hydrofoil and cavity edges
(z ý 0, z 1 and z ý L) where function X°(z) has singularities of 1/2 (square root) and 1/4 type. More
to the point, the outer solution is not comJpleted, for the numlber of unknowns is greater then the numiber of
conditions and coefficient 3 in (1) or (2) is an unknown parameter. The main goal of the matching procedure
is to close the whole problem (to determine all the paramfeters in outer and inner descriptions) and to get rid
of the singularities of the linear outer solution.
Generally speaking, the miatching procedure is carried out into three steps: the first one allows us to inatch
asylnptotic descriptions in the outer region and in the trailing edge region (the velocity U1 = Vý in expression
(7) and the coefficient B in the equation (1) or (2) are deternmined); the second one miatches the outer description
with known value of B and leading edge expansion to yield the values of 1, and U2 = V• in (14) and the third
one enables re-entrant jet width 6, and velocity U:3 = V• in (19) to be derived. Notation U1, U2 and U83 is
introduced to distinguish velocity absolute value in the local regions.
First, it is obvious that

2 (14

as x - 1-, y = 0- and -a+, rl = 0+ (see figure 2) and therefore the limiting form of (1) and (2) near the
trailing edge with spoiler is

8/ /213 1

where L 1->n c()1

where L --cos-2 (T/2) > 1 and a -cot~r/2).
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Taking into account the fact that X (x - 1)/i, where =- - is relative spoiler length this expression and
formula (13) are compared to give

U1 -- V(0 =- VV/'-I -+(7

3 '7 2•*- (24)
cos sin-2

where

0

It is to be underlined that all the coefficients A, 83 C, 1Dk, $k in (1) and (2) are of the same order of magnitude.
That is why E- 0(a2 ) as A = 0(a).
Second, it is seen that

L

as x - 0+,. y = 0- and 0-, therefore the limiting form of the classical solution (1) near the leading edge is

XT .(X) 1± I I ( . (It + 8 + 1+ 4L a (0 (t) dt + +aC

and for nonquadrature solution (2) is

X" (x) - I + i C a • + C - 2 (S-, +1D2 - Sý3 -1D4 + S H- - .. + A
2L a

4L 1 {13 +-aC - 2a (,l+ -D2 -&3 -1D4+5 6 .+E)}+

the value of the coefficient B being given by (24).
The matching procedure for these expansions and expression (16) considering the fact that Z z/(lw/1) results
in

U2 = Vo = V.I-+ IT;

~ L (25)
_- 4 4 L2 3 + H-C - 2a (Sl D- D2 - 5 13 - )4 + S5 H- i)6  4 (

where
'it (1 _ t2) (1 +-t)} d,

0

Note that 1 ) k 0k = 0, k =1, 2, ... in the case of the supercavitating shock free flat plate. Expressions (25)
show the influence of flow parameters including spoiler geometry onto the length of the upper wetted portion
of the leading edge 1, for a given value of angle -. It follows from the latter equation (25) that lw/l = O(a 4)

as C, 1 ) k, 8 k are of the order of O(a) and - O(N/ ) = O(a).
Third, in the vicinity of the cavity trailing edge x -- L-, y - 0+ and -- H-oc, r/ = 0+ (see figure 2)

L ={• L-x'

wherefrom the limiting form of outer solution (both classical and nonquadrature) is

x" (x)- I +iA - I + iA -x

Taking into account the fact that X (x - L)/(6/1), where ,/l is a half of the relative width of the re-entrant
jet, this expression along with (23) are compared to yield

t V 0, = V LH-2 (26)V• v v•,i+•; 1 4 "
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The expressions show relation between the width of the re-entrant jet and flow paramieters (including spoiler
length £ and inclination angle f3). Note that 6,/1 O(a2) becaulse of A ()(a).
The 'informnation streamn' in the nmatching procedure is directed fromn the trailing edge of the hydrofoil to the
leading one and to the trailing edge of the cavity as well. In fact, the spoiler geometry paramieters f3 and £
dictate the value of the coefficient 3 which, in turn, defines the leading edge and re-entrant jet characteristics.
The additive comnposite solution for the conjugate velocity can he constructed in a following ianner:

X,(z) X°(z) +- xW(z) W- xx(z) H- xW(z) xi(z) X'(z) - X'(z) (27)

where subscripts 1, 2. 3 corresp)ond to local flow t)rollemis in the vicinity of the spoiler, leading edge and cavity
trailing edge. Substituting composite solution X' instead of outer X° into formulae (3) (6) enables one to derive
hydrodynamic coefficients which are everywhere valid and to calculate correct flow pattern.

2.5. Exact solution to the nonlinear flat plate problem and asymptotic analysis

Consider a nonlinear problemi of the flow around a supercavitating shock free flat plate. it is useful as a
verification of the asymptotic results obtained in the previous sections. The problem under consideration is
that of the theory of jets in an ideal fluid and has to he treated by corresponding methods. The physical z x+iy
and auxiliary ( planes are shown in figure 8. The same notation is used as in section 2.1 where the general
shock free cavitating problemi is formulated. The velocity absolute value on the free surfaces is v0) v, N H- + .
where (T > 0 is cavitation numbner. The region occupied by the fluid is 1)ounded by solid segments [AC], CO]
and [OB] and cavity surfaces (BE) and (AE), point E is that at infinity (second Riemann sheet). Point at
infinity F (first Riemann sheet) has the image 0 b + ic and stagnation point F image Q d + if on the
first quadrant of the auxiliary (-plane.

½F

D i~ E

t -7 Md + if

-7.-VV 0 B 0 C A

Figure 8: Flow pattern and auxiliary (-plane for the nonlinear shock free flat plate problemi.

With the correspondence between the planes, the Chaplygin method allows us to write down the following exact
solution: dw a Y- t / 0) ( 0)

Xw (i0,.y = - (28)
_VO __+a) (¢ +o)(0) + )

dw N •((2 - a2)((2 - 2)(2 2) (29)

(1¢ ((2 + 1)((2 - (2)2((2 (.2)2

wherefromn

1 -/7 ( )2(( + + )2Z¢) N i--) )+. od (30)

t
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Five conditions

z, = z(a) = l1 i(7 - B) = ZB = z(O3) ; ZA - z=(c) - z(a) lw ei(Y-')

x Voo .
VO (i1(

generate a system of seven nonlinear equations in eight real unknowns a, t, 0 b + ic, - d + if, N and 1w.
An additional eighth condition is to he used to close the problem, namely connected with direction of the
re-entrant jet at point E. Assume that angle p, is given, then the condition is

or

0(1) (31)

where O(rl) denotes direction of velocity vector

2- a b b 2f3 t
O(rl) - argx(i'r/) = -c + -y - arctan - - 2 arctan - 2 arctan arctan -. (32)

'T ,r7 ,rl-C ,rl+C + i ,r

The pressure distribution coefficient is

n~ ( 1a2-y/ ý - 24ý+ 2 +-ý2 t2,3/
N) ý (33)

CK +a Ký2 +2bý + b2+ C,2)Ht

where { Re (() is connected to z through relation (30). Lift and drag coefficients are

n dz i(l ) I dw dw (34)
CFp CD + iCL +• ZA -{( dZB •]•~z({.(4

0 0

On the other hand, using residue theory, one arrives at the following relationships (which are correct for an
arbitrary cavitating hydrofoil):

2q 1- v0 L 2q r sin,) (35)CD =-- 1V- Cos p, ; CL =-- - -- Sil 35

where q = 26v(0 denotes the flow rate in the re-entrant jet E (6, is a half of the width of the jet) and r is
circulation along a large contour comlpletely surrounding the cavitating foil and the cavity and enclosing most
of the flow. Note that

res (d r+iq

and, moreover,

q =7rN(1 +a 2 ) ((1 +Hb2 - c 2 )2 +4b
2c2)

2 ((1 + d2 - f 2 )2 + 4d2f2)
2

Another form of the force coefficient Cp = CD + iCL is

CF 4=r (- i- +e 1 'Re (res) + res). (36)
Voo

Let us analyse the solution to the problem under consideration in the case of (A - 0. --- 0. E/1-- 0

and lw/l -- 0, that is under assumption that hydrofoil brings small perturbations into the inflow. Thorough
asymptotic analysis of the problem is given in [1] and below just final results are shown.

It is clear from what was done above that a -H- +Dc, co -- i (b -- 0 and c -- 1) and t -- 0 if f3 = 0(1) and

-=0(1).
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Taking account of only linear terms in equations (28)-(32) under those circumstances results in (c - 1) <K b (if
T, 1 + 0(a)) and

8f3do I 2 ~~-df 2

(T-4fdoa + 1 -__ 4d7T R 1' 1

1, 40 d + f a + fI F4(37)
S 4 -4 (f2 + d2)2 \ 2  a 7R 1V

S 7r 1 (,2 2f3 1 2
S f2d f -do0CV--f do

16 fJ2d (2 v =R 7)
dw 12-y 4 2- 2f3 t. dw -Na 2(((2 + 1)

výd7 7 a + 1 70 d( ((4 + 2(2 + (f2 + d2))2 )2 (38)

where L. denotes 'nonlinear' cavity extent, - eiaz and

1 1

0 0

The conformnal inapping of the first quadrant of (-plane onto the upper senmi-plane v, has the following forml

where vo= 2dof - L/l . Substituting this expression into (38) gives

dw 2f3 thUlo . - uo /4b 2-y I -2f3S1 i + i VI , + - (40)
Vc(Hl 7T /ý11 (•1+ v±,o) 11o 7 a a

(H 1) 2(41)
1,( L (1,12 + 1)2

Bearing in mind that linear' L and 'nonlinear' Ln cavity extent are connected to each other through the relation
(due to a shift of coordinate systems)

L l+--nL1±

and L cos- 2 (T/2), we find that

sin - co s -

do - 4 ., f _ 4

sinillsi2
Substituting these linits into asymnptotic exp)ansions obtained above gives expressions coinciding with those
reduced from outer (2) and coniposite (27) solitions in the case of a suJpercavitating shock free flat plate when
f(x) -ax and Dk =k 0. Moreover, the asymjptotic and nonlinear approaches give the similar formulae
for the width of re-entrant jet 26, and upper wetted portion of the leading edge lw/l (compare (26) and (25)
with (37)).

2.6. Numerical results

Mathematica for Windows comtpter mathematical environment was used to obtain all the numerical results
shown in this section.
Flow pattern and hydrodynamnic coefficients are given in figure 9 for nonlinear theory (NLT) and inatched
asynIptotics (MAE) for a shock free flat plate. The flow paramfeters are chosen to he a 10', T= 0.5, = 0.05,
f3 90 °, - = 600 and p, 2000. The position of stagnation point F is also shown.
Pressure distribution coefficient CO is depicted for such a flat plate in figure 10 (for the same set of the flow
paramfeters). Numerical results for the linear theory (outer asymiptotic expansion X°(z)) is shown as well.


